If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2)+4x-11=0
a = 1; b = 4; c = -11;
Δ = b2-4ac
Δ = 42-4·1·(-11)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{15}}{2*1}=\frac{-4-2\sqrt{15}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{15}}{2*1}=\frac{-4+2\sqrt{15}}{2} $
| 6/5x+39+81=180 | | 150-2w=110+3w | | 0.5(29+r)=7.75 | | 36=-4n+56 | | 0.5(7.75+r)=29 | | p+8=27 | | 14+21x=180 | | 0.5(7.75-r)=29 | | -37y=8.695 | | 0.5(29-r)=7.75 | | 65+b+25=189 | | 4m+1=3m+2 | | 12=h7 | | c-14=67 | | 20m2+18m-18=0 | | 11+4x=10+3x | | z=4/5z+10 | | 6=y-37 | | 3(4x-10=2(3x-30) | | 16=9x-(-64) | | 20m^2+18m-18=0 | | 2.25x+5=13.5x+1 | | 5x+1495=17 | | -8=3(m-4) | | 17(x+5)=1495 | | m^2+30+11m=0 | | 18=7x-(-42) | | 10x-5=15x+8 | | h^2+19h+90=0 | | 5x+9=5×-4 | | 20=04x05 | | 10+4x=-82 |